What Is Asset Tokenization?

In recent years, a new trend has emerged in the world of finance: asset tokenization. This technology promises to revolutionise how assets are bought, sold, and traded. Asset tokenization is converting physical assets into digital tokens on a blockchain network.

In this article, we will delve into what asset tokenization is, the technology behind it, its benefits, and its challenges. We will explore the market size of asset tokenization and how it is projected to grow in the coming years. According to a report by MarketsandMarkets, the global asset tokenization market size is expected to reach US$5.6 billion by 2026, with a compound annual growth rate of 19.0% from 2021 to 2026.

Asset tokenization can disrupt traditional finance by democratising investment access and increasing liquidity. However, some challenges need to be addressed, such as regulatory frameworks, security concerns, and the need for interoperability between different blockchain networks.

What Is Asset Tokenization?

The concept of asset tokenization is relatively new, emerging in the early 2010s with the development of blockchain technology. The first asset to be tokenized was Bitcoin, a digital currency that uses blockchain technology to record transactions and create new units.

However, it wasn’t until later that other assets began to be tokenized. In 2017, a company called tZERO became the first to launch a regulated security token trading platform, allowing for tokenizing assets such as real estate, private equity, and debt.

Asset tokenization is a process that involves turning physical assets, such as real estate, art, or commodities, into digital tokens that can be bought and sold on a blockchain network.

Think of it like a digital version of a stock certificate. Like owning a share of a company through a stock certificate, you can now own a fraction of an asset through a digital token. For example, instead of buying an entire house, you can own a fraction of that house through a digital token.

This is important because it allows for fractional ownership, making it easier for people to invest in assets that were previously only available to large institutional investors. It also increases liquidity, which means buying and selling these assets is easier and creates new investment opportunities for people who may not have had access to them before.

As technology evolves and becomes more accessible, asset tokenization is likely to become an increasingly important part of the financial landscape.

Asset Tokenization Technology

The technology behind asset tokenization is based on blockchain, a decentralised digital ledger that records transactions across a network of computers. Blockchain technology allows for secure, transparent, and tamper-proof transactions, making it an ideal platform for asset tokenization.

Like cryptocurrencies, digital tokens can be bought and sold on the network. Below is an overview of the process. 

To tokenize an asset, a smart contract is created on the blockchain that defines the terms of the investment, such as the ownership structure and the rights and responsibilities of the investors. This smart contract is then used to create digital tokens representing fractional ownership in the asset.

These digital tokens are then traded on the blockchain network, just like cryptocurrencies. Investors can buy and sell these tokens on exchanges or through peer-to-peer transactions. As real-world assets back the tokens, their value is tied to the underlying asset.

For example, imagine a real estate developer who wants to raise capital for a new development project. They could tokenize the development project by creating digital tokens that represent fractional ownership. These tokens could then be sold to investors on a blockchain network, providing the developer with the capital needed to fund the project. Investors would then own a portion of the development project and receive a share of the profits when the project is completed and sold.

Another example is the tokenization of fine art. Artwork can be challenging to value and sell due to its subjective nature. By tokenizing fine art, investors can buy and sell fractional ownership in the artwork, making it a more liquid investment. Additionally, the blockchain ledger provides a transparent ownership record, reducing fraud risk.

The Benefits

Asset tokenization offers several benefits over traditional financial transactions. One significant advantage is increased liquidity. Traditional investments, such as real estate or private equity, can be difficult to buy and sell due to high transaction costs and limited market access. Asset tokenization allows for fractional ownership, which means investors can buy and sell smaller portions of an asset, making it easier to liquidate their investment.

Another benefit is increased transparency. The blockchain ledger used in asset tokenization provides a transparent record of ownership, reducing the risk of fraud or errors. The ledger is immutable, meaning once a transaction is recorded, it cannot be altered, providing a secure and tamper-proof record of ownership.

Asset tokenization also offers greater accessibility to a broader range of investors. Previously, real estate or private equity investments were only available to large institutional investors or accredited individuals. Tokenization allows for fractional ownership, meaning investors with smaller amounts of capital can participate in investments that were previously out of reach.

In addition, asset tokenization offers greater efficiency in the investment process. Traditional investments often require a complex and lengthy transaction process involving intermediaries such as brokers and lawyers. Asset tokenization eliminates the need for intermediaries, reducing costs and time.

Asset tokenization offers numerous benefits over traditional financial transactions, including increased liquidity, transparency, accessibility, and efficiency.

The Risks and Challenges

While asset tokenization offers numerous benefits, it also presents risks and challenges.

One of the main risks is the potential for regulatory uncertainty. Asset tokenization is a relatively new concept, and regulations are still developing. Different countries have different laws regarding the use of blockchain technology, and there is no universal framework for asset tokenization. This lack of regulatory clarity can create uncertainty for investors and companies and may slow the adoption of asset tokenization.

Another challenge is the risk of hacking or security breaches. Blockchain technology is secure and tamper-proof but not invulnerable to attack. If a hacker gains access to the blockchain ledger, they could alter transaction records, steal assets, or compromise investor information. Companies must take appropriate security measures to mitigate this risk.

Asset tokenization may also face challenges related to market acceptance. Despite the potential benefits, there may be resistance to investing in digital assets. Investors may be wary of the technology or not fully understand the implications of investing in a digital token. Companies and platforms offering asset tokenization must educate investors and build trust in the technology.

Finally, asset tokenization may face challenges related to scalability. As more assets are tokenized and traded on blockchain networks, the volume of transactions could potentially overwhelm the system, leading to slower processing times and increased costs. Blockchain technology is still in its early stages, and it remains to be seen whether it can handle the scale required for widespread asset tokenization.

Companies Using Asset Tokenization

There are several companies and platforms that are using asset tokenization in various ways. Here are some examples:

Harbor. Harbor is a blockchain platform that specialises in tokenizing private securities. The company’s platform allows issuers to offer securities to a wider range of investors, with fractional ownership, lower transaction costs, and increased liquidity. Harbor has tokenized assets such as real estate, private equity, and venture capital.

Securitize. Securitize is a blockchain platform that enables the tokenization of traditional securities such as stocks, bonds, and derivatives. The platform allows issuers to offer securities to a wider range of investors, with greater efficiency and transparency. The company has worked with several companies to tokenize securities, including Blockchain Capital and SPiCE VC.

tZERO. tZERO is a regulated platform for trading security tokens. The platform enables the trading of tokenized assets such as private equity, real estate, and debt securities. tZERO offers increased transparency, lower transaction costs, and increased liquidity for investors.

Vertalo. Vertalo is a blockchain platform that enables the tokenization of alternative assets such as private equity and real estate. The platform offers a suite of tools for issuers to manage their tokenized assets, including compliance tools, investor management, and cap table management.

Closing Thoughts

Asset tokenization is a relatively new concept, but it can potentially revolutionise the financial industry in the coming decade. As blockchain technology continues to evolve and regulations around tokenization become more explicit, we can expect to see significant growth in the use of asset tokens.

The primary driver of this growth will be the increased demand for alternative investments. Asset tokenization allows investors to access alternative investments, such as art, real estate, private equity, and venture capital, with lower transaction costs and greater efficiency.

In addition, we can expect to see continued innovation in the asset tokenization space. New platforms and technologies will emerge, offering greater functionality and efficiency for tokenized assets. This innovation will help to reduce transaction costs further, increase liquidity, and improve the overall user experience for investors.

However, some challenges must be overcome for asset tokenization to reach its full potential. These challenges include regulatory uncertainty, security risks, market acceptance, and scalability. Companies and regulators must work together to address these challenges and create a framework supporting asset tokenization growth.

In conclusion, the future of asset tokenization is bright, with significant growth expected in the coming decade. As blockchain technology evolves and regulations become more evident, we expect to see widely increased adoption of asset tokens as investors search for new ways to diversify their portfolios.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io.

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io.

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

Tokenization Truly Disrupts

Blockchain technology has revolutionised how we think about asset ownership, management, and investment. Tokenization is one of the many innovations that have arisen from this technology. It can disrupt existing asset life cycles, accelerate product innovation, and create customised, hyper-personalised options for investors. 

This article will explore tokenization and how it differs from traditional methods. We will delve into the benefits and drawbacks of tokenization, examine real-world use cases, and analyse market statistics to gain a deeper understanding of this transformative technology.

What Is Tokenization?

Tokenization is a process that involves converting traditional assets, such as real estate, artwork, or securities, into digital tokens that can be traded on blockchain networks. These tokens are essentially digital representations of the underlying assets. 

They provide investors with a way to own and trade assets in smaller fractions rather than owning the entire asset outright. This allows for increased liquidity, lower barriers to entry, and greater transparency. Think of it like a digital representation of a physical asset, which can be bought and sold in smaller parts, with ownership tracked securely and transparently on a blockchain network.

One real-world example of tokenization in finance is the tokenization of company shares. In traditional finance, owning shares in a company means holding a paper certificate or digital record representing a percentage of ownership. This makes it difficult to trade or sell smaller portions of the shares, as the minimum tradable amount is usually one full share.

With tokenization, a company can convert their shares into digital tokens representing smaller ownership fractions. For example, a company could tokenize its shares, with each token representing one thousandth of a share. Investors can then purchase as many tokens as they wish, allowing them to invest in the company with smaller amounts of capital.

Another example is payment card tokenization. Payment card tokenization is replacing sensitive payment card information, such as the card number, with a unique token. This token can then be used in place of the actual card information for payment transactions. Here is a simplified explanation of how payment card tokenization works:

  1. When a customer provides their payment card information during a transaction, the merchant’s payment processor securely captures the information.
  2. The payment processor then generates a unique token to represent the card information.
  3. The token is securely stored in the payment processor’s system, along with reference to the original card information.
  4. When a payment transaction is initiated using the token, the payment processor retrieves the original card information using the reference and completes the transaction on behalf of the customer.
  5. The merchant never sees or stores the customer’s payment card information, which helps to protect against data breaches and fraud.
  6. The token can only be used for transactions with the specific merchant or payment processor that generated it and is useless to anyone who may intercept it.

Overall, payment card tokenization helps to increase the security and privacy of payment transactions by reducing the amount of sensitive information that is shared and stored.

The Technology Behind Tokenization

The technology behind tokenization is based on blockchain, a distributed ledger technology that allows for secure, transparent, and tamper-proof data recording. When an asset is tokenized, it is converted into a digital representation on the blockchain network. This digital representation is called a token, essentially a unique string of code representing ownership of the underlying asset.

Tokens can be programmed to represent various types of assets, such as real estate, artwork, stocks, or commodities. The programming of tokens can be customised to meet the specific needs of the asset being tokenized. For example, a token can be programmed to represent a certain fraction of an asset, or it can be programmed to pay out a certain percentage of returns on the asset.

Tokenization also offers greater transparency and security. Because ownership of tokens is recorded on a blockchain network, it is tamper-proof and transparent. This makes it easier to verify ownership and track the movement of assets, which can help to prevent fraud and other illegal activities.

Financial Use Cases

Tokenization has several use cases in finance that can benefit both issuers and investors. Here are some of the most common use cases for tokenization in finance.

Fractional ownership. Tokenization allows investors to buy and own a fraction of an asset that was previously not possible due to high entry barriers. For example, a piece of real estate can be tokenized and divided into multiple digital tokens, allowing investors to buy and sell a fraction of the property. This opens up new investment opportunities for retail investors and reduces the risk associated with owning a single asset. Companies like Harbor are using tokenization to offer fractional ownership in real estate assets.

Capital raising. Tokenization can be used to raise capital for new projects or businesses. By issuing digital tokens, companies can raise funds from a global pool of investors without the need for intermediaries like investment banks. This can be a more efficient and cost-effective way to raise capital. Companies like Securitize and Tokeny are providing tokenization solutions for capital raising.

Trading and liquidity. Tokenization can make it easier to trade assets that were previously illiquid or traded on traditional markets with high fees and barriers to entry. Digital tokens can be traded 24/7 on decentralised exchanges, increasing liquidity and reducing trading costs. Companies like tZERO and OpenFinance are building decentralised exchanges for tokenized securities.

Compliance and regulation. Tokenization can help issuers comply with securities regulations by automating compliance checks and providing transparency in ownership and transactions. Blockchain networks can also ensure that only authorised investors can trade certain securities. Companies like Polymath and TokenSoft are providing compliance solutions for tokenized securities.

Tokenization has several use cases in finance, including fractional ownership, capital raising, trading and liquidity, and compliance and regulation. Companies like RealT, Securitize, tZERO, and Polymath are using tokenization to disrupt traditional finance and offer new opportunities to investors.

Challenges of Tokenization

While tokenization offers several advantages over traditional finance, several challenges need to be addressed.

Regulation. Tokenization requires compliance with various regulations and laws, which can vary by jurisdiction. This can be challenging for companies that operate across multiple regions and must navigate different regulatory frameworks.

Liquidity. Tokenized assets can be illiquid, meaning they may not be easily tradable or exchangeable. This can be a significant challenge for investors who need to sell their assets quickly or for companies that need to raise capital.

Investor protection. Tokenized assets may not have the same level of investor protection as traditional securities, such as shareholder voting rights or disclosure requirements. This can increase the risk of fraud or abuse.

Interoperability. Tokenization requires interoperability between different platforms and systems, which can be challenging due to the lack of standardisation in the industry.

Adoption. Tokenization is a relatively new concept, and many investors and businesses may be hesitant to adopt it due to the lack of understanding or familiarity with the technology.

Despite the challenges of regulation, tokenization also has the potential to increase compliance and reduce fraud. Tokenized assets can be subject to ‘smart contracts’, which are self-executing agreements that can automate compliance requirements and reduce the risk of fraud or errors in the investment process. This can increase trust in the investment process and reduce the need for costly and time-consuming audits and regulatory oversight.

In terms of liquidity, while tokenized assets may be illiquid in some instances, as we’ve already noted, tokenization can also increase liquidity for assets that were previously illiquid or difficult to trade. Tokenization can enable secondary asset markets, increasing liquidity and providing an exit strategy for investors.

Ultimately, the benefits of tokenization outweigh the potential disadvantages. 

Closing Thoughts

Tokenization has the potential to be a genuine disruptor in the finance industry, particularly within asset management. Tokenization enables fractional ownership of assets, opening up investment opportunities to a broader range of investors and increasing liquidity for previously illiquid assets. Additionally, tokenization can increase transparency and efficiency in transactions, reduce fraud and increase compliance while potentially lowering costs.

However, there are challenges to overcome, such as regulatory compliance, interoperability, and investor protection. Adopting tokenization may be slow due to a lack of familiarity with the technology and concerns about the risks and benefits.

Overall, while tokenization has the potential to be a game-changer, its success will depend on overcoming these challenges and convincing investors and businesses of its value proposition. If successful, tokenization could benefit the finance industry significantly, revolutionising the investment process and opening up new opportunities for investors and companies alike.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

How Smart Cities Use Blockchain 

Smart cities, which use technology to improve citizens’ quality of life and optimise urban services, have rapidly grown in popularity. According to a recent report, the global smart city market is projected to reach $158 billion by 2022. 

By utilising blockchain technology, smart cities can enhance their security, transparency, and efficiency in supply chain management, voting systems, and energy consumption. Implementing blockchain in smart cities benefits the citizens and creates sustainable and resilient urban environments.

This article explains what smart cities and blockchain technology are, and how they work together. 

What Are Smart Cities?

A smart city is an urban area that leverages technology and data to improve its citizens’ quality of life, optimise resource use, and create more sustainable and efficient communities. By integrating connected devices and systems, smart cities analyse data to provide more efficient and effective services, from transportation to energy management to public safety.

One prime example of a smart city is Singapore, which has implemented numerous initiatives to enhance the living experience of its citizens. For example, the city-state has a sophisticated transportation system that uses data and technology to manage traffic flow and reduce congestion, making it easier and faster for residents to get around. 

Singapore has also implemented smart waste management systems that use sensors to optimise collection schedules, reduce the amount of waste sent to landfills, and increase recycling rates.

Another example of a smart city is Amsterdam, which strongly focuses on sustainability and green energy. The city has implemented several initiatives to reduce its carbon footprint and increase the use of renewable energy sources. 

For example, Amsterdam has a smart grid system that integrates renewable energy sources, such as wind and solar power, into the city’s energy mix. This helps reduce the city’s dependence on fossil fuels and increase clean, sustainable energy use. 

Additionally, Amsterdam has implemented smart lighting systems that use sensors to automatically adjust the brightness of streetlights based on the presence of people, vehicles, and bikes, saving energy and reducing light pollution.

These are just a few examples of innovative initiatives implemented in smart cities worldwide. By leveraging technology and data, smart cities are creating more livable, sustainable, and efficient urban environments for their citizens.

What Is Blockchain?

Blockchain technology is a decentralised, distributed digital ledger that securely records transactions and information. It uses cryptography to link blocks of information together in a chain, creating a permanent and unalterable record of all transactions.

At the heart of blockchain technology sits a network of computers, called nodes, that work together to validate and process transactions. Each node has a copy of the entire blockchain, and the network’s consensus must validate any changes to the blockchain. This decentralised and distributed structure makes the blockchain resistant to tampering, hacking, and fraud.

The benefits of blockchain technology are numerous. One of the most significant benefits is increased security and transparency, as the decentralized and distributed nature of the blockchain makes it nearly impossible to alter or tamper with the information once it has been recorded. Additionally, blockchain technology can reduce the need for intermediaries, such as banks, to process transactions, lowering costs and increasing efficiency. It also enables secure and transparent tracking of assets, such as supply chains, voting systems, and intellectual property. It provides a safe and transparent platform for creating and managing digital assets like cryptocurrencies.

One example of how blockchain could work in smart cities is in the voting process. Voting systems can be susceptible to tampering, fraud, and errors. By implementing a blockchain-based voting system, each vote would be recorded as a secure transaction on the blockchain, providing a transparent and tamper-proof record of the election results. This would increase trust in the voting process and ensure that the results are accurate and fair.

Blockchain is a secure and trustworthy way of recording transactions and information in a decentralized manner, making it a valuable tool for various applications, including smart cities.

Why Smart Cities Need Blockchain Technology

Smart cities require secure, transparent, and decentralised technology to succeed. This is where blockchain technology comes in. It provides a secure, transparent platform for managing data and transactions in a decentralised manner.

One of the biggest challenges in smart cities is ensuring the integrity and security of the data that is collected and processed. Blockchain technology provides a secure and tamper-proof way of recording information, making it a valuable tool for ensuring the integrity of data in smart cities. 

Additionally, the decentralised nature of blockchain makes it resistant to hacking, tampering, and other forms of fraud, providing a secure platform for collecting and processing sensitive data.

Another reason why smart cities need blockchain technology is to improve efficiency and reduce costs. By implementing blockchain-based systems, smart cities can reduce the need for intermediaries, such as banks, to process transactions. This can increase efficiency and reduce costs, freeing up resources that can be used to enhance other services and improve the quality of life for citizens.

Finally, blockchain technology enables secure and transparent tracking of assets, such as supply chains, voting systems, and intellectual property. In smart cities, this can be used to improve transparency and accountability and enhance the management of resources, such as energy and waste.

How Smart Cities Are Created With Blockchain

Building a smart city with blockchain technology requires careful planning, research, and collaboration. Here are some steps to get started:

  1. Research and plan: Research existing smart cities and understand the challenges and opportunities they face. Identify areas where blockchain technology can be used to improve the quality of life for citizens, such as in managing waste, energy, transportation, and voting systems. Develop a plan for how blockchain technology can be used to solve specific problems and improve specific services in your city.
  2. Build partnerships: Building a smart city with blockchain technology requires collaboration and partnerships. Partner with blockchain developers, government agencies, academic institutions, and the private sector to share knowledge, resources, and expertise.
  3. Choose the right technology: There are many different blockchain technologies available, each with its strengths and weaknesses. Choose the best technology suited to your specific needs and goals, and consider security, scalability, and interoperability factors.
  4. Develop a pilot project: Start small by developing a pilot project to test your ideas and demonstrate the potential of blockchain technology. Choose a problem or service that can be improved with blockchain technology and create a proof-of-concept project to demonstrate the potential of the technology.
  5. Engage with the community: Building a smart city with blockchain technology requires community engagement and participation. Engage with citizens and stakeholders to understand their needs and concerns and involve them in the planning and implementation of blockchain-based solutions.
  6. Monitor and evaluate: Continuously monitor and evaluate your pilot project to understand its impact and identify areas for improvement. Share your results with the community and stakeholders to demonstrate blockchain technology’s benefits and encourage its wider adoption.

Building a smart city with blockchain technology requires careful planning, research, and collaboration. Following these steps, you can journey towards a more secure, efficient, and sustainable future.

How Did Singapore Become a Smart City?

Singapore has become a smart city through government leadership, innovative technology, and community engagement. The government of Singapore has taken a proactive approach to transform the city into a smart city. It has provided funding, resources, and support for developing and deploying smart city solutions. The government has also established policies and regulations that encourage innovation and collaboration between the public and private sectors, creating a supportive environment for developing smart city initiatives.

Singapore has also made significant investments in technology, including deploying smart city infrastructure, such as smart grids, sensors, and digital networks. This has enabled the city to collect and process large amounts of data, providing valuable insights into energy consumption, traffic flow, and waste management.

In addition to government leadership and investment in technology, community engagement has been crucial to the success of Singapore’s smart city initiatives. The government has worked closely with citizens and stakeholders to understand their needs and concerns and involved them in planning and implementing smart city solutions. This has helped to create a sense of ownership and involvement among citizens and encouraged their participation in developing a more sustainable, efficient, and livable city.

Risks Associated With Smart Cities

Smart cities can face many risks if they do not integrate blockchain technology. One significant risk is the security of sensitive information. In the absence of blockchain, smart cities may use centralised databases and systems to store and manage data, which can be vulnerable to cyber attacks, data breaches, and other forms of digital crime. This can compromise personal data, financial information, and critical infrastructure, causing harm to citizens and the city as a whole.

Another risk is the lack of transparency and accountability in data management. Without blockchain, there is a risk that data may be manipulated or misused without being detected, leading to potential privacy violations and ethical concerns. This can erode trust in government and civic institutions and undermine the legitimacy of smart city initiatives.

In addition, smart cities without blockchain may struggle to manage the increasing amounts of data generated by connected devices and sensors. This can lead to data silos and a lack of interoperability between different systems, hindering the ability of smart cities to make data-driven decisions and achieve their goals.

Finally, without blockchain, smart cities may not be able to ensure their data’s long-term security and preservation. This can result in the loss of valuable historical data and the inability to build on past achievements, which can hinder the progress of smart city initiatives.

Closing Thoughts

It is unlikely that every city will become a full-fledged smart city. The adoption of smart city technologies will likely vary depending on a range of factors, including the level of development of the city, the availability of resources and funding, and the priorities and needs of the citizens.

For those cities that do embrace smart city technologies, the future looks promising. With the integration of advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and blockchain, smart cities will be able to streamline their operations, provide more efficient and personalised services, and enhance the quality of life for their citizens.

The future of smart cities is bright and holds immense potential. As technology advances and the world becomes increasingly connected, more cities will likely adopt smart city technologies to improve the lives of their citizens and create more sustainable urban environments.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

Ethereum Is a Base Layer of Computing

Ethereum has maintained a strong position as the second-largest cryptocurrency by market capitalisation after Bitcoin. However, it has gained widespread recognition for its unique technology, smart contracts, and the decentralized applications (dApps).

Ethereum goes far beyond the general abilities of first-generation cryptocurrencies. Since its launch in 2015, Ethereum has grown to become much more than just a digital currency. It has positioned itself as a base layer of computing, serving as the foundation for a variety of applications that rely on its unique abilities combined with its robust and secure infrastructure.

Ethereum’s Benefit, Smart Contracts, and the EVM

At its core, Ethereum, like its big brother Bitcoin, is a decentralised, open-source blockchain platform. However, Ethereum also enables developers to build decentralised applications

dApps are possible with Ethereum, because it offers a programmable platform that allows developers to create smart contracts, which are self-executing contracts with the terms of the agreement between two or more parties (usually a buyer and seller) being directly written into lines of code. These smart contracts are executed on the Ethereum Virtual Machine (EVM), a decentralised runtime environment that can execute code on the blockchain.

Smart Contract Basics

Ethereum’s smart contracts are built on its blockchain technology, which is a decentralised, secure, and transparent ledger that records all transactions and interactions on the network.  Smart contracts are designed to enable, verify, and enforce the negotiation or performance of a contract without the need for intermediaries such as banks, lawyers, or notaries, nor their escrow accounts. While there are similar blockchains, Ethereum is the most popular blockchain for smart contracts.  

A smart contract’s encoded terms, stored on a blockchain, are then executed by the blockchain when certain conditions, known as ‘triggering events’, are met. Most of this code is a combination of simple ‘if-then’ statements. For example, in a simple, smart contract for a vending machine, the triggering event is the insertion of the coin: ‘if a coin is inserted’, ‘then’ the trigger releases the treat.

One benefit of blockchain-based smart contracts is that they are immutable, meaning the contract cannot be changed once deployed on the blockchain. Immutability ensures that the terms of the agreement are always executed as written, without the risk of tampering or fraud.  It also means that a smart contract must be carefully crafted before it is deployed.

The Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a key component of the Ethereum blockchain. It is a virtual machine responsible for executing Ethereum’s smart contracts and recording transactions on the blockchain.  

The EVM is a software environment that allows developers to write smart contracts in high-level programming languages, the most common is Solidity (Ethereum’s native smart contract programming language), and then compile them into bytecode that can be executed on the Ethereum network. The EVM is designed to be platform-independent, meaning that smart contracts can be executed on any device that is running an Ethereum node.

The EVM’s primary benefit is that it allows for the creation of dApps that can run on the Ethereum blockchain. These dApps can provide a wide range of services, such as digital identity, voting systems, supply chain management, and decentralised finance, discussed further below.  

Because the EVM is a decentralised platform, these services can be provided without the need for intermediaries or centralised authorities, helping reduce costs and increase the transparency of these functions.

The Ethereum Virtual Machine Architecture and Execution Context Courtesy of github

Another benefit of the EVM is that it provides a high level of security for smart contracts.  Smart contracts are executed on the EVM in a sandboxed environment, which means that they are isolated from the rest of the network and cannot access any external resources without explicit permission. This can help to prevent hacks and other security breaches that can occur in traditional software environments.

Ethereum’s Power

While built from simple triggering events, smart contracts can be used for a wide range of applications. This versatility has made Ethereum a popular choice among developers looking to build decentralised applications. Let’s look at a few of the ways these dApps are being utilised.

Digital Identity and Voting Systems

Ethereum is being used for digital identity and voting systems by providing a secure and transparent way to verify and authenticate users. In a digital identity system, an Ethereum smart contract can be used to store and manage user identities, including their personal information and verification documents.  

This system can help to prevent identity theft and fraud by ensuring that only authorised users can access the system. In a voting system, smart contracts can be used first to confirm a voter’s identity and then to ensure that votes are recorded and counted accurately while maintaining the anonymity of the voters.  

This two-tiered system can help increase the voting process’s transparency and integrity while reducing the risk of tampering or fraud. Overall, using smart contracts for digital identity and voting systems can increase security, transparency, and trust in these critical areas.

Supply Chain Management

Ethereum’s blockchain technology has also found its way into the world of supply chain management. By using smart contracts, businesses can create a decentralised, tamper-proof ledger that records every step of the supply chain by enabling the creation of decentralised supply chain solutions that utilise blockchain technology and smart contracts.  

These solutions, known as blockchain supply chain solutions, can provide a high level of transparency and security in the supply chain, by allowing all parties involved (businesses and consumers) to track and verify the movement of goods and information in real-time from the origin to the final destination. 

Smart contracts can be used to automate many of the processes in the supply chain, such as payment processing, quality control, and inventory management, which can reduce the risk of errors and fraud. Additionally, blockchain technology can help reduce the risk of counterfeiting and ensure the authenticity of products, which is particularly important in industries such as pharmaceuticals and luxury goods. 

Overall, Ethereum’s impact on supply chain management has the potential to increase efficiency, reduce costs, and improve the overall transparency and security of the supply chain.

Gaming

Another area where Ethereum is making significant inroads is in the field of gaming

Using smart contracts, game developers can create provably fair decentralised games that use blockchain technology, offering transparent and auditable gameplay. These blockchain games, are built on the Ethereum blockchain and allow players to own, trade, and sell in-game items and currency as digital assets.  

This system creates a new level of ownership and control for players, allowing for intermediary-less decentralised transactions, and creating a new form of digital economy. Blockchain games also have the potential to reduce the risk of fraud and hacking, as all transactions are recorded on the blockchain and cannot be altered.  

Additionally, blockchain games can provide players with a new level of transparency and fairness, as using smart contracts can ensure that the game rules and rewards are enforced without central authorities.  

Overall, Ethereum’s impact on gaming has opened up new possibilities for player ownership, security, and fairness, and has the potential to revolutionise the gaming industry as we know it.

Decentralised Finance

Ethereum’s impact on Decentralised Finance (DeFi) has been immense, as it has become the primary blockchain used for DeFi applications. DeFi refers to a new generation of financial services that operate on a decentralised, blockchain-based platform. 

These services include lending, borrowing, trading, and investing and are built using smart contracts that automate many of the processes involved in traditional finance. By eliminating intermediaries and providing a more transparent and secure platform, DeFi has the potential to democratise access to financial services and provide more opportunities for people to participate in the global financial system without relying on traditional financial institutions.  

Ethereum’s programmable blockchain has enabled the creation of a wide range of DeFi applications, such as decentralised exchanges (DEXs), stablecoins, lending platforms, prediction markets, and yield farming platforms. The use of Ethereum’s native token, Ether (ETH), has also become a key component of the DeFi ecosystem, as it is used as collateral for loans and as a means of exchange on many DeFi platforms.  

Overall, Ethereum’s impact on DeFi has opened up new opportunities for financial innovation and has the potential to disrupt traditional finance in a significant way.

DAOs

In recent years, Ethereum has also been used to create decentralised autonomous organisations (DAOs), which are organisations that are run by code rather than a central authority.  

DAOs are governed by a set of rules encoded in smart contracts, and decisions are made through a decentralised voting system. This creates a new form of organisational structure that is transparent, efficient, and free from centralised control.  

The options that DAOs bring are far-reaching and make the democratisation of many organisations and groups that were once impossible, possible.

Closing Thoughts

Ethereum has become a base layer of computing, serving as the foundation for a variety of applications that rely on its robust and secure infrastructure. 

Its ability to support a vast array of use cases, from DeFi and gaming to supply chain management and DAOs, has made it a popular choice among developers looking to build decentralised applications. As blockchain technology continues to mature and become more widely adopted, Ethereum is well-positioned to play a leading role in the decentralisation of various industries.

With the switch to a Proof of Stake (POS) consensus mechanism, the entire Ethereum blockchain system is becoming faster and more energy efficient, allowing more users to participate in the infrastructure. This combination makes Ethereum more competitive and enables it to retain its status as a computing base layer. 

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment.  Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io.

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business.  Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io.

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

Ethereum’s Smart Contracts Explained

Blockchain technology is a game-changing phenomenon that has disrupted multiple industries by enabling safe, decentralised solutions for diverse transactions and operations. Implementing smart contracts is one of the most prominent uses of blockchain technology. 

A smart contract is a self-executing contract in which the conditions of the buyer-seller agreement are directly encoded into lines of code. In 2013, Ethereum, the second largest blockchain network, pioneered the notion of smart contracts. Smart contracts have now become a vital element of many businesses, providing efficient and secure solutions for various business activities.

What Are Ethereum Smart Contracts?

They are self-executing contracts with the terms of the agreement between buyer and seller being written into lines of code. These contracts run on the Ethereum blockchain, a decentralised and secure platform. The code in the smart contract is automatically executed when specific conditions are met, eliminating the need for intermediaries and increasing the efficiency and security of the transaction.

Ethereum smart contracts are written in Solidity, a computer language comparable to JavaScript. The code defines the circumstances under which the contract will be carried out and the actions that will be executed if those requirements are satisfied. A smart contract, for example, might be used to transfer ownership of a digital asset from one party to another whenever specific criteria are met.

One of the primary advantages of smart contracts is that they can automate the process of contract execution, saving time and lowering the risk of human mistakes. As a result, they are ideal for a variety of industries, including banking, real estate, supply chain management, and others.

How Do Ethereum Smart Contracts Work?

Smart contracts automate the process of executing specific conditions when triggered by events, such as a transfer of funds. The requirements are pre-written in the code and enforced automatically once met. For instance, a smart contract can immediately release payment to a seller only after the buyer receives a product. In this way, smart contracts enforce the terms of an agreement automatically.

A smart contract process follows steps similar to the below example of buying and selling a product. 

  • The buyer and the seller agree on the terms of the sale, including price and delivery date.
  • The buyer sends the agreed-upon amount of cryptocurrency, typically Ether, to the smart contract’s address.
  • The smart contract code verifies if the conditions of the sale have been met, such as the receipt of the agreed-upon amount of cryptocurrency.
  • If the conditions are met, the smart contract executes the terms of the agreement automatically. For example, it transfers ownership of the product to the buyer.
  • The buyer now has access to the product and the seller has received payment. Both parties can trust that the smart contract has fulfilled and enforced the agreement.
  • The Ethereum blockchain records the details of the transaction, including the product ownership transfer and payment. This provides a secure and permanent record of the transaction.

This process provides a secure and transparent way for individuals to buy and sell products using cryptocurrency. By using smart contracts, the risk of fraud and the need for intermediaries is reduced, and the process of buying and selling products is streamlined and automated.

The Technology Behind Smart Contracts

The Ethereum blockchain powers the technology underneath. This decentralised and distributed ledger securely records transactions and data. Smart contracts are self-executing computer programs that run on the Ethereum blockchain and enforce the terms of an agreement automatically. 

Developers write these contracts in a high-level programming language and compile them into low-level bytecode, which the Ethereum blockchain stores. The Ethereum Virtual Machine, a computer network that runs the Ethereum blockchain, executes the bytecode. When someone makes a transaction on the Ethereum blockchain, it triggers the smart contract to run and enforce the agreement’s terms. 

The decentralised and distributed nature of the ledger ensures the security and transparency of the agreement’s terms, as multiple computers store the transaction details, and anyone can audit them. By using smart contracts, individuals can automate various agreements and transactions, reducing the risk of fraud and the need for intermediaries.

Benefits of Ethereum Smart Contracts

Ethereum smart contracts offer numerous benefits to individuals and organisations. They reduce transaction costs and increase efficiency by eliminating the need for intermediaries. The self-executing nature of smart contracts ensures that the terms of an agreement are automatically enforced, increasing the security and transparency of transactions. 

In addition, using a decentralised and distributed ledger eliminates the risk of fraud, as all transactions are recorded on multiple computers and can be audited by anyone. 

A recent survey by Deloitte showed that 72% of executives believe that smart contracts will play a significant role in the future of business. At the same time, the market for decentralised finance (DeFi) applications built on the Ethereum blockchain has grown to over $40 billion in just a few years. These statistics show that Ethereum smart contracts are poised to play a significant role in shaping the future of various industries and revolutionising the way we do business.

Industries Benefiting From Ethereum Smart Contracts

Ethereum smart contracts have the potential to revolutionise various sectors by providing secure and efficient solutions for different business processes. 

Logistics

Smart contracts can be used in the supply chain sector to automate tracking items as they move through the supply chain. This can increase the supply chain’s efficiency and transparency, lowering the risk of fraud and ensuring that items are delivered on time.

Real Estate

Smart contracts can be used in real estate to simplify purchasing and selling property, removing the need for middlemen such as real estate agents. Smart contracts can save time, money, and minimise the risk of fraud by automating the process.

Healthcare

Ethereum smart contracts can transform the healthcare industry by automating and optimising numerous operations. For example, electronic health records (EHRs) can be securely stored and maintained on the blockchain using smart contracts, boosting patient data privacy and security while making it easier for healthcare practitioners to access and exchange information. 

Smart contracts may also help clinical studies by automating processes like delivering payments to participants when specific milestones are fulfilled and collecting and storing participant data.

Gaming

Ethereum smart contracts have the potential to change the gaming industry by allowing gamers to engage with games and participate in the gaming economy in new and inventive ways. They, for example, may be used to build decentralised, player-driven markets where users can buy, sell and exchange virtual commodities and currencies. The blockchain secures these markets, giving participants more transparency and security while participating in transactions. 

Smart contracts could automate the hosting of in-game tournaments, such as awarding prizes and collecting entrance fees from players. Smart contracts can also build decentralised gaming platforms where participants can play games and earn rewards directly from the platform.

Companies Using Ethereum Smart Contracts

Many companies have adopted Ethereum smart contracts to provide secure and efficient solutions for their business processes. Some of the companies using Ethereum smart contracts include:

  • Microsoft: Microsoft has adopted Ethereum smart contracts to provide a secure and transparent platform for managing the supply chain of its products.
  • JPMorgan Chase: JPMorgan Chase is using them to increase the efficiency and security of its cross-border payments.
  • Accenture: Accenture uses them to provide secure and transparent solutions for its clients’ supply chains.

Companies will continue to adopt blockchain technology as it evolves and offers significant business benefits. 

Getting started with Ethereum smart contracts requires a company to understand Ethereum and blockchain technology. They can begin by educating themselves on the Ethereum blockchain, smart contracts, and the Solidity programming language. 

Hiring a team of developers with experience in Ethereum and blockchain technology is also a great idea. This team will develop, test, and deploy the company’s smart contracts. 

The next step would be choosing a development environment, such as Remix, Truffle, or Ganache, to build and test their smart contracts. 

Finally, the company can deploy their smart contracts on the Ethereum blockchain and start using them to automate its business processes, increase transparency and security, and reduce costs. With the right team, resources, and determination, any company can get started with Ethereum smart contracts and leverage the power of decentralised technology.

Closing Thoughts

According to a report by Grand View Research, the global smart contract market is expected to reach $1.4 billion by 2025, growing at a CAGR of 25.2% from 2020 to 2025.

The future of the Ethereum blockchain is exciting and holds great potential for growth and development. In the next ten years, we can expect to see the following:

  • Increased Adoption: As more individuals and organisations become aware of the benefits of decentralised technology, we can expect to see a significant increase in Ethereum blockchain adoption. 
  • Expansion of Decentralised Applications: The Ethereum blockchain allows for the creation of decentralised applications (dApps) that can run on the blockchain. We can expect to see the continued growth of this ecosystem with the development of new and innovative dApps.
  • Development of New Use Cases: As the Ethereum blockchain evolves, it will likely lead to the creation of new use cases and applications. This could include decentralised finance, prediction markets, and more.
  • Scaling Solutions: Scalability has been a significant challenge for the Ethereum blockchain. However, with the development of new scaling solutions, such as sharding, we can expect the Ethereum blockchain to be able to handle more transactions and become more widely adopted.
  • More Competition: As the Ethereum blockchain grows, we can expect to see more competition from other blockchain platforms. However, the Ethereum blockchain has a large and established community, giving it a competitive advantage.

Overall, the future of the Ethereum blockchain is bright, and we expect to see continued growth and development in the coming years. The decentralised and distributed nature of the blockchain provides the potential for dramatically enhanced security, transparency, and efficiency in various industries.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

Blockchain Oracles in DeFi

We need to take a step back to understand blockchain oracles and why they are created. Oracles are problem solvers for many smart contracts launched on blockchains. 

But what is a smart contract, and what problem do oracles need to solve? We will start by answering these two questions and then explain how they solve problems for the DeFi space.  

Blockchain Oracles in Brief

Blockchain oracles are complicated computerised systems that connect data from the outside world (referred to as ‘off-chain’) with a blockchain (or ‘on-chain’).

Blockchains, Cryptos, Smart Contracts, and a Problem

The majority of blockchains have their own native cryptocurrency that is used to transfer value, enable the protocol’s operations, or to facilitate governance. Some blockchains (the most well-known being Ethereum) can also be used to build smart contracts. These are blockchain based self-executing contracts with the terms of the agreement between two or more parties, usually a buyer and seller, being directly written into lines of code. 

Smart contracts will execute predetermined actions automatically when defined conditions are met, and by being built on the blockchain, they are traceable, irreversible, and unchangeable (immutable). These smart contracts are executed ‘trustless’, not requiring a third party, and if written correctly, can be designed to carry out nearly any contract imaginable

If a buyer wishes to purchase a home with cryptocurrency, a simple, smart contract could be written for the transaction. It would say something like the following, ‘If the Buyer sends the required funds to the Seller, then the deed of the home at X location is transferred from the Seller to the Buyer’. 

When the conditions of the smart contract are met, it is irreversibly executed in accordance with its programming. There is no need for traditional third parties to initiate, manage, or execute such a contract.  

There is, however, a problem with this system. Blockchains need a way for smart contracts to be able to use external off-chain data so that the smart contracts can have applications in the real world. 

With the real estate example above, off-chain data may include proof of successful payment or the evidence of a deed receipt. Because blockchains are generally self-contained, the connection to the real world is a problem; this is where the problem-solving nature of oracles comes into play.  

Oracles Connects Blockchains to Off-Chain Data

Oracles provide a way for a blockchain and its smart contracts to interact with off-chain data.  Oracles are similar to another computing system, an application programming interface (API), but to the world outside the blockchain. 

There are several instances where real-world data must be communicated to a closed on-chain system. This data is critical when smart contracts rely on real-world events to execute correctly. 

Crypto oracles will query, verify, and authenticate the needed external data and then relay it to the closed blockchain system. This authenticated data will then be used to validate the smart contract.  

Inbound and Outbound Oracles

Oracles will generally establish two-way lines of communication with a blockchain; data that can be sent inward to the blockchain or outward. While outbound oracles can provide information from the blockchain to the real world, inbound oracles that bring into the blockchain off-chain data remain much more common. 

This imported information can be from nearly any source, asset prices and their fluctuations, proof of payments, weather conditions, flight information, pollution measurements, sports scores, and so on.

A common example of an inbound oracle in the form of a smart contract would be written as follows, ‘If asset A hits the defined price P, then place a buy order of U units’. 

An outbound oracle could be used when a smart contract’s conditions are fulfilled on-chain.  For example, a simple smart contract could be created that will unlock a web-enabled smart lock on a real-world storage unit. Once the correct amount of cryptocurrency is received as a payment to a defined crypto wallet, the unlock signal is sent to the real-world lock.  

Software and Hardware Oracles

The majority of crypto oracles are processing digital information, but not exclusively. Software oracles provide data from digital sources, such as servers, websites, and databases.  

Hardware oracles, on the other hand, deliver data directly from the real world. Software oracles can provide real-time information, exchange rates, flight information, pricing information, and the like. Hardware oracles can provide data from video cameras, weather monitors, barcode scanners, and similar. 

The Centralised Oracle Problem

Centralised oracles are under the control of a single entity, and these tend to be the sole providers of information to a smart contract. This system requires that the participants of a smart contract place a significant amount of trust in this single entity. 

A centralised oracle also means that there is a single point of failure, having no redundancy.  This point of failure threatens the security of a smart contract if the connection to the oracle or the oracle itself becomes compromised. The smart contract’s effectiveness and accuracy depend heavily on the data provided. Therefore, centralised oracles retain a tremendous amount of power over smart contracts.  

The reason that smart contracts were invented in the first place was to avoid counterparty risk and reliance on a third-party intermediary. Oracles allow contracts to be performed between trustless parties, but the more centralised they are, the more risk they bring with them, and they become the middleman they were intended to replace. 

This is known as the oracle problem, and it means that the preservation of fairness, security, and privacy, along with the avoidance of over-centralisation, which ultimately damages the relationship between blockchains and their smart contracts.

Decentralised Oracles

Decentralised oracles achieve a trustless and deterministic result that relies on cause and effect rather than a single relationship. We view this as a clear step in the right direction, as blockchain networks operate by distributing trust among multiple participants.

By combining many different data sources and creating an oracle system that is not controlled by a single entity, a decentralised oracle network has the potential to provide smart contracts with increased levels of security and fairness. 

Because centralised oracles can become compromised, many blockchain projects, such as Chainlink, MakerDAO, Band Protocol, and Augur, are or have already developed decentralised oracles. 

Oracles and DeFi

Oracles are used in decentralised finance (DeFi) applications for the same reason, to bring external data onto blockchains, which are then used to execute smart contracts. 

For example, consider a DeFi application with a smart contract programmed to trade cryptocurrency based on a major exchange price. In order to execute this contract, the smart contract needs access to the current price of the cryptocurrency. This data can be provided by an oracle, which fetches the current price from the exchange’s API and feeds it into the smart contract. 

The use of oracles in DeFi applications allows for the creation of very complex financial instruments and applications that are based on real-world data and events, bringing greater functionality and flexibility to the DeFi space.  

Because oracles are responsible for providing external data to smart contracts, it is crucial that the data they provide remain accurate and safe from tampering. Many DeFi applications use multiple oracles and require that they come to a consensus on the data provided.

In our currency trading example above, the exchange API is a single source. If there are multiple decentralised sources obtaining the same price info to gain a consensus, then this could be a decentralised DeFi oracle, automatically more trustworthy than a single API.

Closing Thoughts

The blockchain oracle is the problem solver, bringing external real-world off-chain data on-chain and vice versa. With oracles, smart contracts can expand their functionality, especially useful for the DeFi space, where these enhanced smart contracts create advanced financial instruments. 

When oracles are decentralised, they become even more trustworthy, making them a fantastic option for creating cheap and reliable smart contacts that no longer require a trusted third-party intermediary. As more oracles are created, bringing a more comprehensive array of data sources on-chain, smart contract use should also expand. 

Smart contracts may well turn into the solution that creates mass crypto acceptance.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

AI and Its Many Forms

Artificial intelligence (AI) is no longer just a science fiction concept but a technological reality that is becoming increasingly prevalent daily. There are several forms of AI, each with unique characteristics and applications. 

This article will explore the various forms of AI today, including machine learning, natural language processing, computer vision, expert systems, and robotics. By examining each type of AI, we can better understand how these technologies function and the potential benefits they can offer society. By understanding the different forms, we can also better appreciate their implications for the future of various industries and the overall economy.

The Different Types of AI

There are various types of AI, each with specific qualities and uses.

AI can be classified as either narrow or general based on the scope of its tasks. Narrow AI, also known as weak AI, is designed to perform specific and highly specialised tasks. 

For example, a chatbot that can answer customer service questions or an image recognition system that can identify particular objects in photographs are examples of narrow AI. Narrow AI systems are designed to complete specific tasks efficiently and accurately but are limited in their ability to generalise beyond those tasks.

In contrast, general AI, also known as strong AI or artificial general intelligence (AGI), is designed to perform various tasks and can learn and adapt to new situations. It aims to replicate the cognitive abilities of humans, including problem-solving, decision-making, and even creativity. It seeks to create machines that can perform any intellectual task that a human can.

While we have made significant progress in developing narrow AI, we are still far from achieving general AI. One of the main challenges is creating machines that can learn and generalise from a wide range of data and experiences rather than just learning to perform specific tasks. Additionally, general AI will require the ability to reason and understand context in a way currently impossible for machines.

Below are the typical applications. Most of these are still narrow bar expert systems which are beginning to show some aspects of general AI. 

Machine Learning

Machine learning is one of the most common forms of AI and involves training algorithms on large datasets to identify patterns and make predictions. For example, Netflix uses machine learning to recommend shows and movies to viewers based on their previous viewing history. 

This technology has also been applied to healthcare to help diagnose and treat medical conditions.

Natural Language Processing

Natural language processing (NLP) is another form of AI that allows computers to understand, interpret, and respond to human language. One real-world application of NLP is chatbots, which many companies use to provide customer service and support. For example, Bank of America uses an NLP-powered chatbot to help customers with their banking needs.

Computer Vision

Computer Vision is a form of AI that enables machines to interpret and understand visual information from the world around them. One example of this is the use of computer vision in self-driving cars. Companies such as Tesla use computer vision to analyse data from sensors and cameras to make real-time decisions about navigating roads and avoiding obstacles.

Expert Systems

Expert systems are AI systems that use rules and knowledge to solve problems and make decisions. These systems are often used in industries such as finance and healthcare, where making accurate decisions is critical. For example, IBM’s Watson is an expert system that has been used to diagnose medical conditions and provide treatment recommendations.

Robotics

Robotics is another form of AI involving machines performing physical tasks. One real-world application of robotics is in manufacturing, where robots are used to assemble products and perform other tasks. For example, Foxconn, an electronics manufacturer for companies like Apple, uses robots to assemble products on its production lines.

It’s important to note that we now have primarily narrow AI designed to perform specific tasks. However, the ultimate goal of AI is to develop general AI which can perform a wide range of tasks and learn and adapt to new situations. While we may not have achieved general AI yet, developing narrow AI systems is an essential step towards that goal. The interrelated and supportive nature of these different forms is what allows us to make progress towards this ultimate goal.

How People Perceive AI

Artificial intelligence is often perceived as a futuristic concept still in its early stages of development. However, the truth is that it is already a commonplace technology that is widely used in various industries. Many companies have quietly incorporated it into their operations for years, often in narrow, specialised forms that are not immediately apparent to the general public.

For example, AI algorithms are commonly used in online shopping websites to recommend products to customers based on their previous purchases and browsing history. Similarly, financial institutions use it to identify and prevent fraud, and healthcare providers use it to improve medical diagnoses and treatment recommendations. It is also increasingly used in manufacturing and logistics to optimise supply chain management and reduce costs.

Despite its prevalence, many people still associate AI with science fiction and futuristic concepts like robots and self-driving cars. However, the reality is that it is already deeply integrated into our daily lives. As AI continues to evolve and become even more sophisticated, its impact on various industries and our daily lives will become known to all.

Closing Thoughts

The development of general AI will profoundly impact many industries, including healthcare, transportation, and manufacturing. It will be able to perform a wide range of previously impossible tasks, from diagnosing complex diseases to designing and creating new products. 

However, with this increased capability comes a need for increased responsibility and regulation. As AI becomes more integrated into our daily lives, it will be essential to ensure that it is used ethically and with the best interests of society in mind. In the future, it is likely to become an even more integral part of our lives, transforming how we live, work, and interact with technology.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

DeFi Explained

Decentralised finance (DeFi) is rapidly revolutionising the financial industry by offering innovative financial products and services that are decentralised, transparent, and accessible to everyone. DeFi operates on blockchain technology and allows individuals to take control of their finances without intermediaries. 

According to Cointelegraph, the DeFi market has seen tremendous growth, with the total value locked in DeFi protocols surpassing $70 billion in January 2023. As DeFi continues gaining momentum, it is expected to change how the world thinks about and interacts with finance.

What Is DeFi?

Unlike traditional finance, which relies on intermediaries such as banks and financial institutions, it is built on decentralised networks that allow for direct peer-to-peer transactions and offer more transparency, security, and accessibility.

At its core, DeFi leverages blockchain technology to create a new financial infrastructure that is open and accessible to anyone with an internet connection. This infrastructure is based on smart contracts, self-executing agreements that enforce the terms of a contract without the need for intermediaries. This means that its users can access a range of financial products and services, such as lending, borrowing, trading, and insurance, without going through a traditional financial institution.

Financial firms and institutions are taking notice and are looking to incorporate its benefits into their operations. The transparency and security offered can help to reduce the risk of fraud and increase efficiency in financial transactions. 

Additionally, its decentralised nature means that it has the potential to offer financial services to individuals who are currently underserved by traditional finance, such as those in developing countries or those with limited access to conventional financial services.

How do DeFi and Blockchain Work Together?

Decentralised finance and blockchain technology are two sides of the same coin, enhancing the other to create a new financial ecosystem. DeFi leverages blockchain technology to provide a decentralised and transparent infrastructure for financial transactions, while blockchain technology offers the security and immutability necessary.

Blockchain technology, the underlying technology, is a decentralised and secure ledger that records transactions across a network of computers. This decentralised nature means there is no central point of control or single point of failure, making blockchain networks highly resistant to hacking and tampering. The transparency and immutability of blockchain technology make it ideal for DeFi, as it allows for all transactions to be recorded publicly and makes it difficult for anyone to alter the records.

DeFi takes advantage of this security and transparency to offer various financial services, such as lending, borrowing, trading, and insurance, without intermediaries. For example, a sample lending platform may allow users to lend and borrow assets using smart contracts, with the platform’s underlying blockchain technology providing the security and transparency necessary for transactions. In this way, DeFi leverages blockchain technology to offer a new, decentralised financial infrastructure accessible to anyone with an internet connection.

DeFi and blockchain technology work together to create a new financial ecosystem that is decentralised, transparent, and secure. The decentralised nature of blockchain technology provides the security and transparency necessary for DeFi to function effectively. At the same time, it leverages blockchain technology to offer financial services without intermediaries. This combination has the potential to change the way the world thinks about and interacts with finance, making financial services more accessible and secure for everyone.

DeFi and Traditional Finance

Traditional finance firms need to care about DeFi because it represents a significant shift in the financial landscape. It offers a new way for people to manage their financial assets and transactions without relying on centralised intermediaries like banks. This decentralised model has proven to be secure, transparent, and accessible to people worldwide, making it an attractive alternative to traditional finance.

By ignoring DeFi, traditional finance firms risk being left behind as more people flock to decentralised alternatives. They need to stay ahead of the curve and understand the growing ecosystem to adapt and evolve their own services to meet the market’s changing demands.

Furthermore, DeFi has the potential to disrupt traditional finance and impact the bottom line of these firms. Traditional finance firms must take DeFi seriously and find ways to integrate it into their business models to remain relevant and competitive.

How Are Start-Ups Using DeFi?

Aave is a DeFi start-up that offers decentralised lending and borrowing services. The platform allows users to deposit their digital assets as collateral and then borrow other assets at a flexible interest rate without needing a central authority. 

Aave uses smart contracts to automate the lending and borrowing process and ensure that each loan’s terms are transparent and fair. The platform also offers features like flash loans, which allow users to borrow funds without collateral for a short time, and liquidity pools, which enable users to earn interest on their deposited assets.

Compound is another start-up revolutionising the lending and borrowing world. The platform allows users to deposit and lend various digital assets, including cryptocurrencies, stablecoins, and non-fungible tokens. 

Like Aave, Compound uses smart contracts to automate the lending and borrowing process, but it also includes a unique feature called ‘cTokens’, which allows users to earn interest on their deposited assets. cTokens are unique because they represent a user’s stake in a particular asset within the Compound platform, and their value changes in real-time based on market conditions.

Uniswap is a decentralised exchange that allows users to trade cryptocurrencies in a trustless manner. Unlike traditional centralised exchanges, Uniswap doesn’t require users to deposit their funds into a central exchange, which reduces the risk of theft and hacks. Uniswap uses a unique liquidity pool model where users can provide liquidity to the platform in exchange for a share of the trading fees. 

Source

The platform’s automated market maker algorithm ensures that users can trade token pairs without needing an order book. This makes it easy for users to trade even less popular tokens that might not be listed on centralised exchanges.

DeFi start-ups are using decentralised finance to disrupt traditional finance and offer new financial services that are secure, transparent, and accessible to people all over the world. By using smart contracts and other blockchain technologies, these start-ups are creating a new financial ecosystem free from centralised intermediaries’ limitations and restrictions.

Moving to a DeFi Model

Fidelity Investments is a traditional finance firm exploring DeFi to offer new financial services to its customers. The company has launched a new division called Fidelity Digital Assets that provide custody and trading services for cryptocurrencies, making it one of the first large traditional finance firms to embrace DeFi. 

Fidelity is using DeFi to offer its customers access to new investment opportunities in the cryptocurrency market and reduce the barriers to entry that have traditionally made it difficult for institutional investors to participate in the market.

Goldman Sachs is another traditional finance firm that is exploring DeFi. The company has been actively engaged in DeFi’s value proposition and creating DeFi products. Goldman Sachs is collaborating with other businesses to develop a digital assets framework, per a press release from November 2022. 

JP Morgan is another traditional finance firm that is moving into DeFi. The company has been exploring blockchain technology for several years and working on its DeFi initiatives. For example, JP Morgan initiated its first DeFi trade on blockchain in 2022. Project Guardian, a trial programme run by the Monetary Authority of Singapore (MAS) to investigate potential DeFi applications in wholesale finance markets, enabled the trade.

Traditional finance firms are exploring DeFi to offer new financial services to their customers and stay ahead of the curve in an ever-changing economic landscape. By embracing DeFi, these firms can reduce barriers to entry and offer secure, transparent, and accessible financial services to their customers. 

Risks and Challenges

One of the main risks associated with DeFi is security. Since it is built on decentralised networks, it is more vulnerable to hacking and other forms of cybercrime. Smart contracts, which are used to automate the process of lending, borrowing, and trading in DeFi, are particularly vulnerable to security threats. For example, if a hacker can exploit a vulnerability in a smart contract, they can steal funds from users or manipulate the platform in other ways.

Another challenge is scalability. As more people use DeFi platforms, the networks can become congested, leading to slow transactions and high gas fees. This can make it difficult for users to participate in DeFi platforms, especially during times of high demand.

Since DeFi is a relatively new technology, there is still a lot of uncertainty about how it will be regulated in the future. Some countries have already taken steps to regulate DeFi, while others have been more cautious. This uncertainty can make it difficult for DeFi platforms to operate and discourage investors from participating in the market.

Lack of liquidity is still associated with DeFi. Although DeFi platforms have snowballed in recent years, they still have relatively small liquidity pools compared to centralised exchanges. This can make it difficult for users to trade their assets and lead to price volatility.

Finally, DeFi can also be challenging for non-technical users. Since it is built on complex technology, it can be difficult for users unfamiliar with blockchain and cryptocurrency to participate in DeFi platforms. This can make it difficult for DeFi to achieve widespread adoption and discourage users from participating in the market.

Despite these risks, by integrating the right technology, such as blockchain, DeFi will still disrupt and revolutionise the industry. 

Closing Thoughts

The future of DeFi is exciting and filled with endless possibilities. In the next ten years, we can expect to see it become more accessible and user-friendly, allowing more people to participate in the market. This will likely increase the number of DeFi platforms and the size of the DeFi market. 

Additionally, as DeFi grows and matures, we expect to see more innovation in the space, including new financial products and services built on decentralised networks. This will likely include everything from new forms of lending and borrowing to new insurance products and investment opportunities. Overall, the future of DeFi is bright, and we expect continued growth and innovation over the next decade.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

Blockchain and AI

According to a report by Allied Market Research, the global blockchain technology market was valued at $3 billion in 2020 and is expected to grow to $39.7 billion by 2025. Similarly, the AI market is projected to grow to $190 billion by 2025, according to a report by MarketsandMarkets

With the increasing demand for both blockchain and AI, combining these technologies can revolutionise many industries and transform the way we do business.

What Is Blockchain?

Blockchain technology is a decentralised, distributed ledger that allows for secure and transparent transactions without intermediaries. It was first introduced in 2008 by an unknown individual or group of individuals under the pseudonym Satoshi Nakamoto to facilitate Bitcoin transactions. 

The technology works by recording transactions in blocks linked together to form a chain, hence the name ‘blockchain’. Each block contains a cryptographic hash of the previous block, ensuring the chain’s integrity.

The benefits of blockchain technology include increased security, transparency, and efficiency. By eliminating the need for intermediaries, such as banks, transactions can be completed faster and at a lower cost. The technology’s decentralised nature also makes it more resistant to fraud and hacking. Blockchain is used in various industries, including finance, healthcare, and supply chain management.

What Is AI?

AI, or artificial intelligence, refers to the ability of machines to perform tasks that would typically require human intelligence, such as learning, reasoning, and problem-solving. The history of AI traces back to the 1950s when researchers first began developing algorithms for machine learning. Since then, AI has evolved to include many technologies, including neural networks, natural language processing, and computer vision.

AI has rapidly transformed the finance industry by providing faster, more accurate decision-making capabilities and improving operational efficiency. Some examples of how AI is being used in finance include:

  • Fraud detection: AI-powered fraud detection systems use machine learning algorithms to identify unusual behaviour patterns and detect fraudulent activities. 
  • Trading and investment: AI-powered trading algorithms use natural language processing (NLP) to analyse news articles, social media, and other data sources to identify patterns and predict market movements. 
  • Customer service: Financial institutions use chatbots and virtual assistants to provide customer service and support. 

Financial firms worldwide are increasingly turning to artificial intelligence (AI) technologies to improve their efficiency, automate their processes, and provide better customer service. Three examples of financial firms that have successfully adopted AI are Capital One, Citigroup, and Ping An.

Capital One, a US-based financial institution, has implemented natural language processing (NLP) to enhance customer service. Its virtual assistant, Eno, can understand and respond to customer inquiries in natural language, available via the company’s mobile app, website, and text messages. The system has helped Capital One reduce wait times and enhance customer satisfaction. The company has also used machine learning to detect and prevent fraudulent activity.

Citigroup, a multinational investment bank, has been utilising computer vision to analyse financial data. Its research team has developed an AI-powered platform to analyse financial statements and other data to identify patterns and trends. 

The platform can also provide predictive insights, assisting investors in making well-informed decisions. The system has improved Citigroup’s research capabilities and enabled the company to provide superior investment advice to its clients.

Ping An, a Chinese insurance and financial services company, has been using machine learning to improve its risk management. Its risk management platform, OneConnect, can analyse large amounts of data to identify potential risks and provide real-time insights. 

The system can also offer tailored risk assessments for different types of businesses. OneConnect has assisted Ping An in reducing its risk and enhancing its operational efficiency.

Financial firms are increasingly adopting AI technologies to remain competitive and enhance customer service. By leveraging NLP, computer vision, and machine learning, financial institutions can streamline operations, improve customer service, and make informed decisions. Firms that fail to embrace these technologies may risk falling behind their competitors.

Why AI and Blockchain Must Work Together

AI and blockchain are two of the financial services industry’s most innovative and disruptive technologies. While they are often seen as separate technologies, AI and blockchain are becoming increasingly interdependent for several reasons. 

One of the most significant advantages of blockchain is its ability to provide secure, transparent, and tamper-proof transactions. However, blockchain cannot detect fraud, which is where AI comes in. 

By integrating AI and blockchain, financial firms can build more secure and transparent systems that leverage AI’s fraud detection capabilities to enhance the trustworthiness of blockchain. This combination can offer improved security and transparency in transactions, which is crucial in financial services. 

Another advantage of integrating AI and blockchain is the improved accuracy and efficiency of financial services. Smart contracts built on blockchain can automate financial transactions and self-execute when predefined conditions are met. By integrating AI, smart contracts can also be made more intelligent and capable of automatically adjusting to changing conditions. This integration can lead to the creation of more efficient and accurate financial systems.

Integrating AI into the blockchain can also help financial firms to detect and mitigate risks more quickly and effectively. AI can analyse vast amounts of data in real-time, making it an ideal tool for risk management. For example, AI can identify anomalies in financial transactions and flag them for review or rejection, making detecting fraud and other risks easier. This benefit can lead to better risk management, an essential component of financial services.

The integration of AI and blockchain can also help financial firms to comply with regulations more effectively. Financial rules are complex and ever evolving, making compliance a significant challenge for financial firms. By combining AI and blockchain, financial firms can improve their ability to comply with regulations and reduce the costs and risks associated with non-compliance. For example, blockchain can provide an immutable record of transactions, while AI can be used to analyse the data and ensure that it complies with regulations.

AI Creates New Business Models

Finally, integrating AI and blockchain opens up new business models and opportunities for financial firms. Decentralised finance (DeFi) applications are leveraging AI and blockchain to create new financial products and services that are more efficient, accessible, and affordable than traditional financial services. The combination of AI and blockchain technology creates new opportunities for financial firms, leading to the development of new financial products and services that were not possible before. 

In practice, many examples of financial firms are already successfully leveraging AI and blockchain to enhance their services. For instance, Ripple, a blockchain-based payments solution, has integrated AI to improve its fraud detection and risk management capabilities. JPMorgan Chase is using blockchain to develop a decentralised platform for tokenising gold, and AI is being used to analyse the data generated by the platform. Visa also leverages blockchain and AI to enhance its fraud detection and prevention capabilities.

AI and blockchain can transform financial services, enhancing security, transparency, accuracy, efficiency, risk management, compliance, and new business models. By working together, AI and blockchain can create synergies that make them greater than the sum of their parts. Financial firms embracing AI and blockchain are likely better positioned to succeed in an increasingly competitive and complex financial services landscape.

Closing Thoughts

The future of AI-enabled blockchain in financial services is promising, with significant advancements expected in the next decade. Here are some potential developments:

  • Financial firms will continue integrating AI and blockchain to improve their operations, increase efficiency, and reduce costs. 
  • By combining AI’s ability to analyse data with blockchain’s secure and transparent ledger, financial firms can develop systems that provide more secure and private transactions.
  • Decentralised finance (DeFi) applications are already leveraging AI and blockchain to create new financial products and services
  • As AI and blockchain become more integrated into financial services, regulatory oversight will increase
  • Integrating AI and blockchain will likely create new business models and revenue streams for financial firms. 

Overall, the future of AI-enabled blockchain in financial services looks bright, with continued growth and development expected in the next decade. As financial firms increasingly adopt and integrate these technologies, we can expect to see significant advancements in efficiency and security as new business opportunities emerge. 

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

What Is Liquid Staking?

In cryptocurrency, staking has become an increasingly popular way for investors to earn passive income. However, a new concept has emerged that takes staking to the next level: liquid staking. This innovative approach can potentially revolutionise the staking landscape and bring even more people into cryptocurrency.

But what exactly is it? This article will delve into this new concept’s details and explore its benefits and risks. We’ll also look at some of the most promising liquid staking projects in the cryptocurrency sector and discuss their potential for growth and adoption. 

Whether you are a seasoned cryptocurrency investor or just starting, understanding the ins and outs of liquid staking is essential for staying ahead of the curve in this rapidly evolving field.

Understanding Liquid Staking

Liquid staking refers to a process that allows investors to stake their assets while still maintaining the ability to use them for other purposes. 

The idea has been around for a few years, but it was not until 2020 that the technology to make it a reality emerged. This was primarily due to the development of Ethereum 2.0, which introduced a new staking mechanism that made it possible to stake ETH while still holding a liquid form of the asset, called a stake token.

The technology behind liquid staking involves a complex system of smart contracts and protocols that enable investors to stake their assets and receive rewards in return. These rewards are typically paid out in the form of additional tokens, which can be traded or sold on the open market. The process of staking itself is typically done through a validator node, which is responsible for verifying network transactions and maintaining the blockchain’s integrity.

Source

As the popularity of liquid staking has grown, so too have the number of projects and platforms that offer this service. Some of the most notable projects include Lido, Rocket Pool, and Ankr, each offering a unique approach with distinct advantages and disadvantages.

Liquid Staking Versus Traditional Staking

Staking is a popular way for cryptocurrency investors to earn passive income by participating in network validation and transaction processing. Traditional staking methods typically involve locking up assets for a set period of time in exchange for staking rewards. However, liquid staking is a newer approach that offers investors more flexibility and control over their assets.

The main difference against traditional staking methods is that it permits investors to maintain control over their assets while still earning staking rewards. With traditional staking, assets are locked up for a set period, which can limit the ability of investors to use or trade those assets.

On the other hand, liquid staking enables investors to stake their assets and receive liquid tokens in return, which can be used for other purposes. This allows investors to continue to trade or use their assets while still earning staking rewards.

Another difference between liquid staking and traditional staking methods is the potential for higher staking rewards. Liquid staking platforms often offer higher rewards than traditional staking, making it more attractive to investors.

Upcoming Projects

There are several platforms and projects that offer liquid staking services, but three of the most well-known are Lido, Rocket Pool, and Ankr.

Lido is a decentralised staking platform that enables users to stake their ETH and receive stETH in return. StETH is a liquid form of ETH that can be traded or used in other ways while still earning staking rewards. 

Lido operates through a network of validators that secure the Ethereum network and process transactions. The platform has gained popularity due to its ease of use and high staking rewards, which have consistently been among the highest in the industry.

Rocket Pool is another decentralised staking platform that allows users to stake their ETH and receive rETH in return. Like stETH, rETH is a liquid form of ETH that can be traded or used while still earning staking rewards. 

Rocket Pool operates through a network of node operators that provide staking services to users. The platform is designed to be highly scalable and decentralised, focusing on security and transparency.

Ankr is a platform that provides staking services for multiple cryptocurrencies, including ETH, BTC, and DOT. The platform operates through a validator network that secures the blockchain and processes transactions. 

Ankr’s liquid staking service enables users to stake their assets and receive liquid staking tokens in return, which can be used for other purposes while still earning staking rewards. Ankr’s platform is designed to be user-friendly and accessible, focusing on ease of use and security.

Overall, these three projects represent some of the most promising and innovative approaches to liquid staking in cryptocurrency. While each platform has its strengths and weaknesses, they all share the goal of making staking more accessible and user-friendly for investors.

The Pros and Cons

As with any new technology, there are both benefits and drawbacks to using liquid staking platforms.

One of the main advantages of liquid staking is that it allows investors to earn staking rewards while still maintaining the ability to use their assets for other purposes. This makes it more flexible than traditional staking, which requires assets to be locked up for a set period. Additionally, liquid staking platforms typically offer higher staking rewards than traditional staking, making it more attractive to investors.

However, there are also risks associated with liquid staking. One of the main concerns is the potential for smart contract vulnerabilities or other security issues that could lead to loss of funds. Another concern is the potential for market volatility, which could lead to significant price fluctuations in the underlying asset.

When it comes to specific platforms, there are also pros and cons to consider. For example, Lido has been praised for its ease of use and high staking rewards, but some users have raised concerns about the centralisation of the platform and the potential for censorship. 

Rocket Pool, on the other hand, has been praised for its scalability and decentralisation, but it is still in the early stages of development. It may not be as user-friendly as some other platforms.

The pros and cons of liquid staking will vary depending on the specific platform and the investor’s needs. While risks are involved, many investors have found that the benefits of liquid staking outweigh the potential drawbacks.

Closing Thoughts

Liquid staking is a modern concept in cryptocurrency that allows investors to earn staking rewards while maintaining control over their assets. 

Despite the risks noted in this article, the popularity of liquid staking is expected to continue to grow in the coming years. As more investors become interested in earning passive income from cryptocurrency investments, the demand for liquid staking platforms will likely increase. 

Additionally, as the technology continues to evolve, we are likely to see even more innovative approaches emerge, with a focus on improving security, scalability, and user experience.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group, www.deltec.io.

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group, www.deltec.io.

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

design and development by covio.fr