How Generative Chat AI Operate

Generative chat AI is an exciting technology that has been making waves in recent years.

Generative chat AI is an exciting technology that has been making waves in recent years. It refers to computer programs designed to interact with humans using natural language processing and can generate responses that seem to be coming from a real person. 

These AI systems are capable of analysing and understanding the context of a conversation and can create responses that are not only relevant but also coherent.

According to PitchBook data, generative AI investment rose by 425% between 2020 and December 2022, totalling $2.1 billion last year. This is an especially astounding performance, given a general decline in tech investment in 2022.

This article will dive into technical details that make generative chat AI possible. We’ll explore natural language processing, deep learning, and neural networks and how they are used to train these AI systems. We’ll also touch on some challenges developers face when creating generative chat AI and how they work to overcome them.

What Is Generative Chat AI?

Generative chat AI refers to computer programs that use natural language processing (NLP) to generate human-like responses to a user’s input. These AI systems are designed to interact with humans in a way that feels natural, as if you were chatting with another person. Unlike rule-based chatbots that rely on pre-written responses, generative chat AI is capable of generating new responses on the fly based on the context of the conversation.

At the heart of generative chat AI is a technology called deep learning, a type of machine learning that involves training neural networks on large amounts of data. By feeding these neural networks with vast amounts of text data, such as chat logs or social media posts, they can learn to generate human-like responses.

The training process involves teaching the neural network to recognise patterns in the data, such as common sentence structures, idioms, and other linguistic features. Once the network has learned these patterns, it can generate new responses that fit within the context of the conversation. The more data the neural network is trained on, the better it becomes at generating natural-sounding responses.

How Does Generative Chat AI Work?

Generative chat AI works by using a combination of natural language processing (NLP) and deep learning, specifically through the use of neural networks. Neural networks are a machine learning algorithm that can recognize patterns in data and learn to make predictions based on that data.

In the case of generative chat AI, the neural network is trained on large amounts of text data, such as chat logs or social media posts. This training process is called deep learning because the neural network has multiple layers of interconnected nodes that allow it to recognize increasingly complex patterns in the data.

During training, the neural network learns to identify linguistic patterns and relationships between words and phrases. For example, it might know that certain words tend to be used together in specific contexts or that certain terms are more likely to occur in response to particular prompts. This training process enables the neural network to generate new responses relevant to the conversation’s context.

Once the neural network has been trained, it can generate responses to user input in real time. When a user inputs a message, the generative chat AI system uses NLP techniques to analyse the text and determine the context of the conversation. Based on this context, the system then uses the trained neural network to generate a relevant and coherent response.

The success of generative chat AI depends mainly on the training data quality and the neural network’s complexity. Developers must ensure that the training data is diverse and representative of the conversations the system will likely encounter in real-world situations. Additionally, they must design neural networks capable of handling the complexity of natural language and generating accurate and engaging responses.

Use Cases for Generative Chat AI

The future holds many potential use cases for generative chat AI, but there are already a few ways that businesses are making the most of the opportunity. 


Generative AI can understand user coding requirements in countless languages such as Python, SQL, and Excel formulas. You can ask it to write or debug your code, and the AI returns step-by-step instructions on implementing it. 

Below is a snippet of what the popular Chat GPT platform can provide using a simple question. The more specific the user is with a question, the better the output. 


Users can provide generative chat AI with a topic overview, context and tone. The output is a loose summary that can speed up the copywriting process, allowing humans to focus on the more creative parts. 

Currently, the results are imperfect; see our section on augmenting roles rather than replacing them below. Still, they can make marketing teams far more efficient by giving them a solid starting point. 

Before posting anything written by AI, it is vital to check the accuracy of the information. Outputs are based on the data AI reads, which can be filled with bias and fake content. 

Customer Service

Sales teams can use generative chat AI to sort through all previous customer interactions across all channels (such as web conferences, phone calls, emails, and instant messages) and then direct it to create the next answer.

Consider yourself a salesperson who must react to a client’s query. Imagine how AI could assist you in coming up with the ideal response based on understanding the account history. An article in Wall Street Journal (membership required) talks about some businesses already adopting AI for this purpose. 

Augmenting Roles, Not Replacing Them

One of the key benefits of generative AI is that it can automate routine tasks, allowing humans to focus on more complex and creative work. For example, a chatbot can handle basic customer inquiries, freeing human customer service agents to handle more complex issues requiring empathy and critical thinking.

However, it’s essential to recognize that generative AI cannot replicate human creativity, empathy, and intuition. There will always be tasks and situations requiring a human touch, such as complex problem-solving, creative work, and emotional intelligence.

Moreover, the widespread adoption of generative AI could potentially lead to job displacement and a loss of human jobs. To mitigate this risk, companies should take a responsible approach to AI adoption, ensuring they are using it to augment human capabilities rather than replace them entirely.

In practice, this means that companies should carefully consider how generative AI can be used to complement human work rather than replace it. This might involve retraining employees to work alongside AI, redesigning job roles to take advantage of AI capabilities, or providing opportunities for employees to learn new skills that will be in demand as AI becomes more prevalent.

The Challenges of Generative Chat AI

Generative chat AI faces several challenges. 

The first major challenge is obtaining high-quality training data. Generative chat AI models require large amounts of diverse and representative training data to learn how to generate appropriate responses to various user inputs. However, obtaining such data can be difficult, especially for specialised or niche domains or languages with limited digital content.

Another challenge is ensuring that the AI model does not produce biassed outputs. AI models are trained on data, which may include inherent biases in language use or representation of certain groups or perspectives. If the training data is biassed, the AI model may learn to produce outputs that reinforce or amplify those biases, potentially leading to harmful or discriminatory user interactions.

And Possible Solutions

To address these challenges, it’s important to carefully curate and evaluate the training data used to train the generative chat AI model. This may involve sourcing data from diverse and representative sources, applying quality control measures to filter out biassed or irrelevant data, and using techniques like adversarial training to ensure that the model can handle a variety of inputs and outputs.

Another approach is to evaluate the outputs of the AI model and implement techniques like debiasing or reweighting to mitigate any potential biases. This can involve human oversight and intervention and ongoing monitoring and adjustment to ensure that the model remains fair.

A further challenge is the consistency of generative AI. Users expect a natural and engaging dialogue where responses flow smoothly from one to another and build upon previous messages. However, generative chat AI models may struggle to maintain coherence and consistency, especially when dealing with complex or unpredictable user inputs. 

For example, the model may generate off-topic or irrelevant responses or contradict previous statements made in the conversation. To address this challenge, AI models may require additional training or techniques like attention mechanisms, which can help the model focus on relevant parts of the conversation and generate more coherent responses.

Closing Thoughts

The future of generative chat AI is promising as advancements in natural language processing and machine learning pushes the boundaries of what’s possible. In the coming years, we can expect to see more sophisticated and context-aware AI models capable of engaging in rich and natural conversations with users. 

These models may incorporate advanced techniques like sentiment analysis, emotion detection, and personality modelling, allowing them to tailor their responses to individual users and create more personalised experiences. However, as with any technology, some potential risks and challenges must be addressed, such as maintaining an ethical and responsible use of AI, ensuring transparency and accountability, and addressing potential biases in the data used to train these systems.

Disclaimer: The information provided in this article is solely the author’s opinion and not investment advice – it is provided for educational purposes only. By using this, you agree that the information does not constitute any investment or financial instructions. Do conduct your own research and reach out to financial advisors before making any investment decisions.

The author of this text, Jean Chalopin, is a global business leader with a background encompassing banking, biotech, and entertainment. Mr. Chalopin is Chairman of Deltec International Group,

The co-author of this text, Robin Trehan, has a bachelor’s degree in economics, a master’s in international business and finance, and an MBA in electronic business. Mr. Trehan is a Senior VP at Deltec International Group,

The views, thoughts, and opinions expressed in this text are solely the views of the authors, and do not necessarily reflect those of Deltec International Group, its subsidiaries, and/or its employees.

design and development by